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We consider the motion of a free rigid body with three pairs of elastic rods and 
with a cavity containing a liquid, in two cases: in a central Newtonian force 

field and in the absence of external forces. By an application of Rumiantsev’s 
theorem [l] we obtain sufficient stability conditions for relative equilibrium in 

a circular orbit and to uniform rotations of this system. We show that the prese- 
nce of a liquid with a free surface in the cavity and the connection of elastic 
rods to the body have a destabilizing effect on the stability of the corresponding 

unperturbed motions of the unaltered system. We also point out sufficient stabi- 
lity conditions in the case when less than three pairs of rods are attached to the 
body. For a large Young’s modulus the stability conditions obtained lead (in the 
absence of the liquid) to the well-known sufficient conditions for the stability 

of a rigid body. Stability conditions for the case when one pair of rods is attached 

to the body and when there is no liquid are compared with the stability condit- 
ions obtained in 12. 31. In connection with the assertion made in @, 31 regarding 

the novelty of the method used, we remark that this method was previously dev- 

eloped by Rumiantsev and was applied to the solution of a number of problems 
on the stability of the steady-state motions of a rigid body with a liquid filling 

r41. 

1. We consider the motion in a central Newtonian force field of a rigid body having 
an arbitrarily-shaped cavity wholly or partially filled with a homogeneous incompress- 
ible ideal liquid and carrying a certain number of thin inextensible elastic rods each of 
which has a constant cross-section and two planes of symmetry. Neglecting the influence 
of the relative motion of the system on the motion of its center of mass, we take it that 

the latter moves uniformly along a circular Keplerian orbit with angular velocity r& . 

We introduce right rectangular coordinate axes systems: an orbital one cxyz with origin 
at the center of mass c of the system and with axes directed along the tangent, the bi- 
normal, and the radius vector of the orbit, respectively, and an attached one ox,x2~3 

with origin at the center of mass 0 of the rigid body and with axes directed along the 
axes of its central inertia ellipsoid. * e Let iI, i2, is be the unit vectors along the axes 

Xl, 52, 29. We denote the unit vectors of the y and z axes by p and y, and their pro- 

jections onto the ~1, x2, 53 axes by pi, pa, p3 and yr, yr, ys. These quantities are rel- 

ated by the equalities 

x1= y12 + y22 + y32 - 1 = 0, 

X3 = PI2 + I32 

= YA + Y2B2 + 

Y I33 -I=0 
Y3P3 = 0 

(1 *I) 

38 
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We shall take it that one, two, or three pairs of elastic rods of length I have been 
fixed to the body at like distances a from the point 0 and, in the undeformed state, are 
situated along the axes x1, x2, xs . Here the coordinate planes serve as the planes of 
symmetry of the rods. We use the indices 1 - 3 and 4 - 6 to identify the rods situated 

along the positive and the negative directions of the axes zr, ~a, xsrespectively. By 

Uj (8, t) = u,jil $ $jia + U2ji3, o<s<z, t>t, (i = 1, 2,. ., 6) 

we denote the elastic displacement vector of the points of the axis of the i th rod. The 

condition that the rods are inextensible leads to the relations [,!I] 

u 
11 

= - V2(u;81 + z(l), u;, = - '/,@j", + $2), $2 = - l/2@;", + uf2) 

(1.2). 

u;, = l/2 (u’,“, + ut4,, u;, = l/a gS + u;‘,), u;, = l/2 (u;“, + UfJ 

~1 = adds 

The condition that the ends of the rods are fixed to the body leads to the boundary con- 
ditions 

Uij = Ui, 3+< = 0, U;j = 24: = 0 
I, a+1 (i, j=i,2,3; i#j) for s=O (1.3) 

From (1.2) it follows that Uii7 z~i,~+i (i = 1,2,3) are quantities of the second order of 
smallness if as quantities of the first order of smallness we take Uij, ~i,~+j and their 
first derivatives t&j, Ui,s+j (i, j = 1, 2, 3; i # j). Note that equalities (1.2) represent 
the inextensibility condition for the rods only to within terms of the second order of 
smallness relative to the quantities indicated. 

For the potential energy & of elastic deformation we use the expression [5] 

Here E is the Young modulus, Iii is the moment of inertia of the cross section of the 
j th rod relative to the straight line drawn through the center of gravity of the section 

parallel to the Xi -axis, EIij is the bending inflexibility. The position of any point 
of the system relative to the coordinate axes OX, x2 xsis determined by its radius vector 
r. For the points of the rods r = r” + w (r’, t), where w (r’, t) is the elastic dis- 
placement vector of the points of the rod, whose position upto the deformation is deter- 
mined by the radius vector,P. The potential energy n, of the force of attraction, 
computed to within terms of order L3Ri3, where L is the characteristic linear dimension 
of the body and R, is the orbit’s radius. is determined by the formula 

np=‘/n~2(3y.eC.y-§peC) 

where 0” is the system’s energy tensor for the point C with the components 

%, = J, -- M <J;“,, + x&) + ~1 i {u& + u& + “& + q, + $2 + “& + “is -t- 
0 

+ u& - a (I - s) + + (P - 
I 

s2) 
I 

(U;; + U;“z + u;; + U;; + U;“, + U; + U$ -k 

+ ul:)}ds+ P2 Jw + %2)dT (1.5) 
t 
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'23 = MZ2$3c- % s [ta -teS) h32 - '35 + u23 - he) + '21"31 + u24"321 as - 
0 

- p2 J x2x3a~ (1’ 2” 3 6)’ 
1 

. . . 

Here M is the system’s mass, Ji are the principal central moments of inertia of the 
rigid body with undeformed rods, c is the area of the rods’ cross section, p1 and p2 
are the densities of the rods and of the liquid, 7 is the region of the space 0x,x2x3 
occupied at the current instant by the liquid, xiC are the components of the radius- 
vector of the system’s center of mass C relative to point 0, to be computed by the 
formula 

~~~~ = a~, j (u12 + u15 + u13 + ~4 as + p2 .[-x,dt ( i’,z .” 6) (1.6) 
0 + 

The symbol (11z2 . ..s3j on the right denotes that to obtain two other formulas we should 
make, in the expression presented, a cyclic permutation of (123) of the indices of the 

quantities xi_: yi, pi, Ji, 633 and of the first indices of the constants Iii and the func- 
tions Uij together with their derivatives, and a cyclic permutation of (12.. .6) of the 
second indices of the constants Iij and the functions uij and their derivatives; the 

primes over these symbols signify that when the second index of the functions Uij and 

their derivatives changes from three to four and from six to one the sign in front of them 
should be replaced by the opposite one. In (1.5) and (1.6). xiC is computed to within 
terms of the first order of smallness relative to the quantities uij, Ui,s+j (i, j = 1, 2, 3; 
i # j), while fl,, is computed to within terms of the second order relauve to these 
same quantities and their derivatives. 

For the kinetic energy 2’ of the system in its motion relative to the orbital coordinate 
axes system, we have the expression 

T= -&-o-fY-o+co (r- 
c 

& 
r,) x (r’ - r,‘) am +-+ S(r’-rr,.)2dm(r’=$)(1.7) 

M 

where o = qi, + o,i, $ 03i3 is the body’s relative angular velocity vector and 
dm is a mass element of the system. The mecnanical system being considered admits 
of a generalized integral of energy T + if’ = const, where W is the altered potential 
energy of the system 

W=~/251~[3y.e~~y-~.eC.~-spe~l+11~ 

Since vi, fii are connected by relations (l.l), instead of W we shall consider below the 
functional w*=w- l/2 Q2 hX1 + 2n2x2 + n3x3) 

where nl, 3t,, Xa are undetermined Lagrange multipliers. 

2, Let us find the system’s position of relative equilibrium. The equations of relative 
equilibrium, the natural boundary conditions, and the equation of the free surface S 
of the liquid at the relative equilibrium position are found from the principle of feasible 
displacements by computing and equating to zero the first variation 6W, of functional 
w*. They have the form 

(361, - JtJYl + 3 @l,Y, + 61,713) - n2B1 = 0 (1 2 3) (2.1) 

t+,,+ n3M1 + 6,282 -I- %303 + 3t2 Yl = 0 (1 2 3) 
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(P2 - 3Yz2) (u21 - x2c) $- (fhh - %2?d (% - xac) $ @$2 - 3yIy2) X 

x (a + s - %c) + (B12 -3 Y12) {[a(l- s) + l/2 (Z2 - s2)lu’21}’ + E*13;IP-2 x 

x 4; = 0 &lt2 . ..“J 

@3" - 3Y32)(u31 - 53c) + (P2P3 - 3?2Ya) (u21 - x22,) + (/33/31 - 3Y,Y,) x 

x(a+s - Gc) + (PI" - 3Y,2) {[a (I - 4 + l/2 (Z2 - s2)l u31')' + E*I,, x 

x SF2 u:; = 0 (1122...33) 
(2.2) 

(P2" - 3Y22) ('24- x22c) + (p2p3 - 3Y2Y3) ("34 - x3c) - (fl182 - +,y,) x 

x (a + s + XlC) + (B1' - 3Y,2) {[a (1 - s) $ '12 (Z2 - S2)Iu24'}' + E*I34 X 

x 52%;: = 0 (1122...3J 

(fl3" - 3Y32) h34 -X3e) + @2P3 - %',I',) (u24 - x2c) - (p3/31 - 3J’3?l’l) x 

X (a + S + Gc) + @1” - 3~7:) {[a (I - 4 + '(2 (I2 - s2)1ua4'}' + EJ,, x 

X %2u: = 0 (1122...63) (E = E,op,) 

u;I=u;p.6;,= u~=o,u2;=u~I= u; =upo 123 

( > 

(2.3) 

Us3 [(r-rr,).y12- [(r -r,).p12 = c = COPSE 2e"6 

for s = 1 

(2.4) 

In Eq.(2.4) the value of the constant c is determined by the amount of liquid in the 
body’s cavity. With respect to surface (2.4) the liquid is assumed to be on that side of 

it for which u > c. In the orbital coordinate axes system Eq. (2.4) of the liquid’s free 

surface S is written in the form u f 322 - y” = c 
and is the surface of a hyperbolic cylinder with a generator parallel to a tangent to the 

orbit. 

3. Equations (2.1), (2.2) and boundary conditions (1.3). (2.3) admit of the solution 

~l=~2=p~=p_q=0, r3=p2=1, Uij=Ui;3+jEO (i, j=i,2,3; i#i) 

nE1 = 3&7 n2 = 0, n3 = - S,,O (3.1) 
The equation for the liquid’s free surface S” has the form 

Ii’ z 3x32 - x22 zzz p (3.2) 

This solution exists when the conditions & = sir = 0;s = 0, & =- & = 0 are 
fulfilled. The superscript zero indicates that the corresponding quantity is computed 
for solution (3. l).. Taking motion (3.1) as bfing unperturbed, we study its stability. For 
simplicity of computation we take it that zlC = U. We obtain the sufficient stability 

conditions from the theorem in [I] as the sufficient conditions for the positive definite- 

ness of the second variation a2Wh for the solution (3.1) in the metric with respect to 

which the functional w* is continuous. 
In the perturbed motion we set y3 = 1 + 6y3, fi2 = 1 + 6p,, while we retain 

the previous notation for the remaining quantities. In a neighborhood of solution (3.1) 

relations (1.1) lead, in the first approximation, to the equalities &y3 = 6g2 = 0. There- 
fore, for computing PW* we can formally take fi2 = y3 = 1; then for 6sW, we ob- 
tain the expression 
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- 371 ("l* - %a + U31 - U34) - 4Ya CU3a - U36 + u23 - uae)l da + 

+ Q’%C{Uf, + u$ + “i3 + “;3 - 3 (u& + qc + “i2 + u&) + 

+[a”,1 -s,+; v2 ] - 2) [3 (u;; + u;“o + u’; + u’,“,) - 

- (u;“, + u$ + ut2 + u;“,,1} ds + cm?, (3.3) 

Here r2 is the part of expression 

r = - Pa J 2 [(3rla - PI”) Xl2 + 2 (3TaTs - PaP3) X2X31 Ip*_l~~ (3.4) 
AT (1 a s) 

which is quadratic in p1, 71, ~2, Uij . The integral over the region AT should be under- 

stood as 

s 
@adz= @adz-- 

A7 s s madz 
7 s* 

where ? and z are the regions of space OX,X~X~ occupied by the liquid under unper- 

turbed and perturbed motions of the system, bounded by the wetted part of the cavity’s 

surface and, respectively, by the parts 5’” and S of surfaces (3. i?) and (2.4) included 

inside the body’s cavity; here in (2.4), c = co + 2Ac, and the value of the constant 

AC is determined from the condition of equality of the volumes of regions ‘to and ‘6. 

We remark that surfaces So and s may consist of several pieces. 

The relations 

~~~~ = 0~1 S (u2s + u26 + ~2~ + u24) a3 i- p2 \ X,dt 

0 LL 

MX3c = 0~1 i (~31 f ~34 f u32 + U33) as + ~2 i z3dt 

0 A+ 

together with the condition of equality of the volumes of regions z” and ‘t form a system 

of three equations for determining the three quantities x~~, 5C, AC as functions of ,fi1, 

Yr, Y2, Uij* If the surface S” has three planes of symmetry and they are the coordinate 

planes ~2x3, 33~1, x1x2, then the equations indicated simplify significantly and yield 

X - M&j (M - AT(+))-l, 2c - .XRC = M,x~~‘(M + M’-‘)-l 2 AC = 0 (3.5) 

after which we obtain from (3.4), 

L’, = - Jg)p? - 3&‘y,2 - 16Yg'y,2 + MC+) (l%f - M(+))-~(M12~))~ + 

+ 3M'-' (M + :vP~-2(nQ$)' , (3.6) 
I 2 

M& = op, 
s 

(u21 + u24 + u23 + u28) dq, JJ,x~) = 0~1 
s 

(u,,+ u3,+ u32+uss)ds 

0 

= ~2 j. 1.~2 I dr&l = p2 \ dt 
-r(t) 
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- P2 c 
x12dt 

.h 

J&’ = p2 c 3xa2x12dS 

s’. If 
= p2 \ xr2dt 

9x$-+ xi2 
.i-) 

Here kf, is the mass of the rods, SIs and S;, are the projections of surface S” onto 
the planes x1x2 and 2W1, while z(t) and ‘t.(-) are regions of space 0x1x2xs., whose 
meanings are obvious. Figure 1 shows these regions for the case of a cylindrical cavity 

a 

with a generator parallel to the x1- axis. The quantities M(+) and M(-) represent the 
masses which the liquid would have if it occupied the regions zC+) and z(-), respectively; 

.A&’ is the moment of inertia relative to plane x2x3 
&), while Jg’ and Ji:’ 

of the liquid filling the region 

are the moments of inertia relative to planes x1x2 and ~25 

ot the liquid in region r(+). The quantities MC+), M(-), &I, .I$‘, Jii’, which arise 

due to the presence of the liquid’s free surface, could be called the apparent additional 
masses and the apparent additional moments of inertia. 

Substituting (3.5) and (3.6) into (3.3) we can represent h2w, as 

ti2W, = Q2 (t3;2 - Sg - Jg))-l {(ei2 - t& - J:;') PI + 

+ sp,i(a + Q(U2l - 7~24 + ulz- +.)ds 1 a+ 

0 

+ 3522 <e;, - S: - J;;‘)-’ {(fb;, - 63 - J&‘, ?‘I - 

1 

- OPl 
s 

(a + s) @I3 - UlE + u31- u34) ds}a+ 

0 
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+ 4cP (& - (3 7) 

1 

- Wl j(o +9(U23- Uaa +%a 
\ 

- u33) dS]2 + 3sP(M + ll!f’-‘)-l (M&y + v 

- 522(&2 - &I- JLw{w, { (a + S)(U21- U24 + Ul2 - Uu) q- 

0 

- 3518 p;, - Sk - JW (01 f (u + s) h8 - %(I + U31 - U34) ds} 2 - 

0 

--4Q2(@;2 -s: -- hJg)-'{Gpl f (a+ S)(U2*--u23+U32-u33) i&)2+ 

0 
1 

i- Q2ap1 s @;I+ q4+ $3 i- U&-- 304+ q,$+ “$ + UgJ + 
0 

+ [,(I - s) + f(I2 - s2)] 3( q3 + u;28 + u; + u;, - 

- ($ + @;“5 + q2 + $$I) ds (3.8) 
Let there be fulfilled the conditions 

eO, - 6; - J$$ > 0, +;, - 9;s - Y&’ > 0, 6;s - 6; - UP > 0 (3.9) 

being the sufficient stability conditions for the relative equilibrium position (3.1) of a 
rigid body with undeformed (Uij zz 0) rods and with a liquid in its cavity. Then, by 
using inequalities of the form 

{Cl& ~~~S~z~~~~ I 
Ir 

f w2& {of’: i (a -I S) wdS1 a < Jap, c zu2ds 
0 0 

where m = alp, is the mass of one rod.and J is its moment of ineraa relative to point 
0. from 13.8) we ohtain with dne regard to (1.41. the ineanalitv 

V(u)> of&* (TSlU",21$_ ~2&c- f &';i- I,,$ + f,,$ -I- IlaU;; + ra,u;I: + 

+ I*4U~pI,,u",B,+ 13&+ 12&+ f,,U';)+ Q2 Ia@ -s) -I- 1/2(12 - s2)1x 

x<3(@;+4 + u; + u$) - (u;“, + a;; + u;; + UZJ] + w iqx + “& + ZL& + 

+ US 26 - 3 (U;, -I- Uzp + “t2 + U;,)] - JQ2 (% - +;I - J6;‘,-1 (%I - u24 + 

+ux,- z&)2 - 3m(@;~ - si3 - &‘)-“(u13 - Ul@ + U3I - u3q)2 - 

- 4JQ2 (6:2- ei3 - 4&))-'(Us2 - U36 + U33 - U3*)2 - 

- Q2rn (M - M’+‘)-’ (UB1 + U2* + u23 + u2,,)“} ds (3.10) 
Let us consider the following variational problems. Find the minima vr, Va, . . . . vs 

of the functionals 
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Vr = 3,6) 

in the class of functions uif (a) (0 & s < I) continuously differentiable upto fourth 
order, satisfying conditions (1.3). The constains vj can be computed also as smallest 
eigenvalues of the corresponding boundary value problems, independent one from the 
other, for the functions uij. 

From (3.10) and (3.11) we obtain the inequality 

V(u) > WlS IVl[UZl + %12 + aP21'2 + ud2)l + y2 luciaa + %a2 + 

+ 6(%,'2 + s.z2,1 + % [%32 + u2fJ2 + 6 w2 + u23’2)1 + VI [u2aa + %a + 

+ 4U2,'2 + ud2)1 + v5 [u 3b2 + U1b2 + Q oG2 + d2)1 + VI [%t? + 7J2a2 + 

+ 4ud2 + U28'31 + Q2 [U212 + h2 + u2,q2 + u2112 - 3 (%12 + %2 + baa t 

+ US:)] - J (62: - fl.1: - Jg’)-’ 52’ (~a1 - ~24 + Ula - UI~)~ - 

- 3J (6,,” - f&’ - /;))%12 (uls - u16 + us1 - u~)~ - 4J (6220 - 9,: - 

- 4&G’)-’ Q2 (Usa - Ug6 + 2423 - U2@)'- 

- m(M - iv(+))-'Q2(u2,+ uaq + us8 + ~2e)~)ds (3.12) 

For simplicity of computation we take 

I,, = I,, = Ia4= Isa - I,, I,, = T12 = 18, = I,, = I, 

113 = I,8 = I,, = I,, = 1s 
Then v1 = v4, V2 = Vs = V6, and the Sylvester conditions for the positive defin- 

iteness of a quadratic form in the quantities ~ija uil occurring undeF the integral sign 

in (3.12). reduce to the inequalities: 3!i-P < Vl (VI is independent of 0) 

fi aa o - &r” - J$ > vyFQa max (1; v1 +Yya,+“P” 
(3.13) 

6 
11 

o_Q890- JL)>wGmax{i; 
v8+v1-3*21~0 VI- 3CP 



46 v.N.RubanovsUi 

4, Along with the relative equilibrium position (3.1) of the system, for which the 
constant co in Eq. (3.2) for the liquid’s free surface 8” is taken to be nonzero (otherwise 
the liquid’s continuity is violated in the system’s perturbed motion),we consider at the 

instant t > t,, the system’s position corresponding to some perturbed motion of the 
system. We introduce into consideration the distance /a of the perturbed free surface 5’ 
of the liquid from the unperturbed So, and also the deviation V of the liquid’s form 
‘C,corresponding to the perturbed state of the system, from the equilibrium form 7’ [4], 

Let us consider the set whose elements are the quantities @,, yl, yz, 12 and the functions 

Regarding the functions uij we assume that they satisfy conditions (1.3) as well as spec- 
ific smoothlless conditions (it suffices to require the continuity of the functions Uij, U;, 

., 
. ..I UQ, u;, U;i, l&ii* UG)s We also take it that for a specified distance h the mag- 

nitude of the corresponding deviation V satisfies the condition V > e,h, where e,, is 
some fixed sufficiently-small positive number [4]. In this set we introduce two metrics 

Qa (p, r, h, U) = Ls (PI” + ~1~ + ~2~) + Lh2 C 2 S (‘Lij2 f z2Uij’2 f 14Uij”2) ds 
i.i 0 

Q @, T, h, u) = Ls (P1” + ~1~ + ~2~) + Lh2 + Z S CW2 + 12uij”) ds 

i.f 0 

In the neighborhood of the unperturbed motion (3.1) metric Q and functional w, are 
continuous with respect to metric Qo, i.e., for any e > 0 we can find 6 (e) > 0 such 
that when the condition Q,, (0, y, h, u) ( 6 is fulfilled there hold the inequalities 

Q < E, I W* - W,” 1 < E, wime W* o is the value of W* for solution (3.1). The 
functionals Q. and Q characterize the deviation of the perturbed state of the system 

from the relative equilibrium position (3.1). The deviation of the velocities of the points 

of the system in perturbed motion from their zero values in relative equilibrium (3.1) 
is characterized by the magnitude T of kinetic energy (1.7) of relative motion of the 
system as well as by the functional I 

For any admissible values of the quantities pi, yl, v2, h, ui) satisfying the condition 

Qo 0% y, h, u) < N, h w ere N is a fixed sufficiently-small positive constant, T --f 0 
as P + 0. 

From (3.7) and (3.12) it follows that when conditions (3.13) are fulfilled h2Wx is a 
functional which is positive definite in the metric Q . Because W, is continuous in metric 

QO it follows that the functional I$‘, is positive definite in the metric Q _ On the basis 
of a theorem in D] we conclude that inequalities (3.13) are sufficient stability conditions 
for the relative equilibrium (3.1) with respect to the functionals Qo, Q, T and P.This 
signifies that for every arbitrarily small positive numbers L, and L, we may choose pos- 
itive numbers N, and N, such that under every admissibk values of the magnitudes of 
the direction cosines p i, yi, the separation h, the deviation V (V > e,h),the elastic 
displacements U~J, the relative angular velocities o of the body, the velocities Uij’ 
of the elastic rods, and the velocities Xi’ of the liquid, satisfying the conditions 
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vo (B* r, h, u) If-f0 < Nl, p (09 u-9 f ) (t-to <N, (4.1) 

for t > t, or at least until V > e,,h there are satisfied the inequalities 

Q (PV Yt h, u) < -L T < L (4.2) 
It follows, in particular, from (1.3) (4.1) and (4.2) that for sufficiently small values 
of N,and Ns there ensues, for t > t,. not only the first of inequalities (4.2) but also 

the inequalities 12@ < L,. 
Conditions (3.13) show that the attachment of elastic rods to the body, just as the 

presence in the body’s cavity of a liquid with a free surface, proves to have a destabil- 

izing influence on the relative equilibrium of the undeformed system with a liquid 

“‘frozen” in the position of relative equilibrium (3.1). The first of conditions (3.13) im- 
poses a specific upper bound on the magnitude 61 ‘of the orbital angular velocity and is 

connected with the existence of the forms of the loss of stability of the rods. 
As E -+ oothe constants vr, v~, vs -+ co and conditions (3.13) turn into conditions 

(3.9) for the stability of relative equilibrium (3.1) in the circular orbit of a rigid body 
with nondeformable rods and with liquid in its cavity; here, if the liquid is absent or 

wholly fills the cavity, then &’ = Jg’ = _&) = O.In case the liquid is absent con- 
ditions (3.9) turn into the well-known conditions Js > Jr > J3 for the stability of the 
relative equilibrium (3.1) of a rigid satellite in a circular orbit. We remark that also 

in the case of a viscous liquid inequalities (3.13) are sufficient conditions for the stabi- 
lity of the system’s relative equilibrium being investigated. 

6. Let us indicate the sufficient stability conditions for relative equilibrium (3.1) of 
a rigid body with a liquid and with one or two pairs of elastic rods. 

1. A pair of rods in the position of relative equilibrium (3.1) is directed along the 

normal to the orbital plane (5.1) 

&Jo - flir” - JSI’;’ > - ( ) 
VP ’ 61,” - 833' - J2; > 0, &z” - 

8JP 
633' - 4J$ > ~ y2 - 352” > 9 

2. A pair of rods in the position of relative equilibrium (3.1) is directed along a tan- 
gent to the orbit 

6~” - 611” - J;;’ > y$$ , 611” - &IS”- Ji;’ > 

6JSP 
>m>O> 6az0-f1330-4J~)>0 

3. A pair of rods in the position of relative equilibrium (3.1) is directed along the 
normal to the orbit 

&a” - 611” -J’z’,’ >O, 6+~33”-J~;)> 

6JV 
> ‘ya > o, 6%~” - 633"- 4J$ > G 

4. Two pairs of rods in the position of relative equilibrium (3.1) are directed along 
the tangent and the normal to the orbit 

J$)>$$&, 
VI +v3- 3521 

622” - 61 lo - 611" I- VI -3V , 

6~” - 833' - 43:;’ > 7 , 
2m 

3Qa < vr, ,v - &+) < 
(v3 + PZ) (VI + Q”) 
Q2 (v3 + v1+ 252’) (5.4) 
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5. Two pairs of rods in the position of relative equilibrium (3.1) are directed along 
the tangent and the binormal to the orbit 

&a0 - en0 _ J$;’ < = 
vl+Ql max 

! 
1; (5.5) 

6. Twc pairs of rods in the position of relative equilibrium (3.1) are directed along 
the normal and the binormal to the orbit 

2J% 6QZ 
622” - I)llO - J$’ > 7X4 t+ll” - 633O - Jg >T >o (5.6) 

Conditions (5.1) - (5.6) may be obtained from (3.13) as 

v,, Ys - 00; vzr vs - WV vr, v, --f _XJ; v2 - cm; vs - co; VI - cc 

respectively. Physically the passage to the limit vi -+ CQ means that the rods directed 
along the 2i -axis are progressively “frozen” and in the limit they should be considered 
as being undeformed. 

8. Meirovirch [2] has investigated the stability of one of the relative equilibrium 
positions on a circular orbit in a central Newtonian force field of a rigid body with two 
thin rectilinear elastic rods. Let us compare the results obtained above with the results 
in B] in which the rod deformations are described, in the notation used above, by the 
vector-valued functions 

u2 (s, t) = u,& + u32i3r us (s, t) = ur5il + u35i3 (6 <s < 1) 

so that the axial components ua2 and uV5 of the elastic variables can be neglected. In 
the system’s relative equilibrium position investigated the pair of rods are in the direct- 
ion of the normal to the orbital plane, and the sufficient stability conditions have the 

form c > B > il > 31?L (n + I)” 

Xm (a + l)Z 
A= (3+ C _ “t ) Q?, 11 > 

3m (n -t 1)3 52? 

c - w (6.1) 

Here A is the smallest eigenvalue of the boundary value problem 

EJu’T = W, A u, u (0) = u’ (0) = u” (I) = a”’ (1) =: 0 

while the quantities A, B, C, by the author’s assertion, are the principal central mom- 
ents of inertia of the system in its undeformed state relative to the x3, ~1, 3% axes, res- 
pectively. Here we have not indicated the parameters with respect to which we have 
investigated the stability of the unperturbed motion being considered. Using the inequ- 

ality 1 
J = 5p1 [ (a -+ s)’ ds < ?n (a + I)” 

0 

condition (6.1) can be brought to the form 

C>B>A>2J, 

The sufficient stability conditions (5.1). obtained in Sect. S, for the relative equili- 
brium position being considered here in the absence of a liquid can be represented in 
the form 
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J2 > Jl > JS > 0, i 
8J 

vJ> 3+ Ja @t ) 
2JQ2 

v2 > m (6.3) 

The resemblance of conditions (6.2) and (6.3) is a formal one since the quantities A, 
B,C are not constants, in spite of Meirovitch’s assertion, but represent the functionals 

A = Js + MTxlc2, B = Jl + MTzgc2, C = J2 + M, (zlc4 + ~3~3) 

1 1 

MXI~ = apl 
s 

(ule + US) ds, Mzs~ = ape 
s 

(UVZ + uas) ds 

0 0 

where M, is the mass of the rigid body. 

7. We now investigate the case when no external forces whatsoever act on the mech- 
anical system under consideration, so that its center of mass moves rectilinearly and 
uniformly. We now assume that the coordinate axes system cxyz is Konig’s system. The 
mechanical system being considered admits of the energy integral T -/- & = const, 
where T is the system’s kinetic energy in its motion relative to the K5nig axes. We in- 

troduce into consideration a coordinate axes system CZZ’Z” rotating around the z -axis 

with some angular velocity 52. For the ( xy ,)-plane.there holds the area integral G .y = 
= k = const,where G is the kinetic moment vector of the system relative to its center 
of mass as the system moves relative to the K&rig axes, and y is the unit vector on the 

z -axis. Denoting by G, the system’s kinetic moment vector relative to point c in its 

motion relative to the axes C.&Z”, we can represent the area integral as 

G,.y+J,Q=k 
where J* = y-@“-y is th e system’s moment of inertia relative to the z -axis. We 
choose the quantity Q such that the equality G, . y = 0 holds at any instant. Then we 
have J,Q = k,and the energy integral can be represented in the form T, + W = 

= con&, where T, is the kinetic energy of the system’s relative motion and Wis the 

changed potential energy of the system 

W++& 
* 

Below, instead of Wwe shall consider the functional 

w, = w + ll2h WI2 + “fi2 + rs2) 

where h is an undetermined Lagrange multiplier. 
From the equality SW, = 0 we obtain the equations of steady-state motion of the 

system, the natural boundary conditions (2.3) at the free ends of the rods, and the equa- 
tion of the free surface of the liquid in steady-state motion. These equations have the 
form 

(6,,y, + +,2y2 + %3Ya)W - A?, = 0 (1 2 3) (7.1) 

53c - (“Icy1 + 52cy2 + “3c?3)73 + (rS2 - lb31 + (a + s, @21?2?3 + Y3h) + 

+ (y: - 1) [a(Z - s)+ V2 (Z2 - .?)Iu~~‘) + E*12,Q2,-2u:; = 0 
(i:‘.:,i 

9~ - (%~I + z2~y2 + 53cY3)y2 + (Y22 - I) u21 + (a + d (“31y2Y3 + YIy2) + 

+ (Y12 - 1) {[a (I - S) +v2 (I - .?)lu,,‘}’ + B*I,,Q;“U:~ = 0 
(,,‘“.“,j 
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‘SC - h,,% + x22cY2 + %C%h + hiL - ‘) %4 + (a + d (“24y2,% - ysy1) + 

+ (yla - 1) ([a (1 - s) + V2 (12 - .s2)lu34’}’ + E,124!&-2u~ = 0 
GT) 

;E2C - ("Icy1 + x2Cy2 + %,y2)y2 + (y22 - lb24 + (a + s, (%4y2yS - yly2)f 

f (yt - 1) {[a (I - S) + '/2(Z2- 2)Iu24’}’ -+ E*I,4Q;2,-2~~ = 0 
i ) 
1i”.” 6 

u 3 (r --rc)B i [(r - c,).y]2 = c (7.2) 
Here Q,, is the magnitude of the angular velocity of the system’s uniform rotation as 
one rigid body in steady-state motion, c is a constant determined by the amount of 
liquid in the body’s cavity. With respect to the surface U = c the liquid is located to 

that side of it for which U > c. In the K&rig axes Eq. (7.2) has the form u = 2s + 

+ ys = c. 

8, Equations (7.1) and boundary conditions (1.3) (2.3) admit of the solution 

y1 = y2 = 0, y3 = 1, G1sO = 6,s” = 0, XICO = x2; = 0, h= tiss0Q02 (8.1) 
Uij = ui,s+j = -0 (t,j=l,2,3: i#j) 

This solution describes the uniform rotation of the system as one rigid body around the 
z -axis with an arbitrary angular velocity Q,,; here the rods are found in the undeformed 

state, and the equation of the liquid’s free surface has the form U” = xl2 f x2’ = cO 

Let us investigate the stability of motion (8.1). For simplicity of computation we 

assume xsC ’ = 0. The sufficient stability conditions for the unperturbed motion (8.1) 
are obtained as conditions for the positive definiteness of the second variation a2W, of 

functional W,for solution (8.1) under the condition that ys c 1. For b2W* there 
holds the expression 

PW, = Q02 [(&so - 61,‘) T12 - 2~,,"r1r, + (%I," - 62,") r221 + JJQo2 ha + 

%S2 + %02 + u122 + %b2 + u212 + u242 + u232 + u262 - 

- 2(a + S)[TI~~~-G~ +Usi-%i4) fTz(U23 - U2e + Us2 - k35)l - 

- [a(l - s) + '/2U2 - s2)] (u/ + G2 + u21'2 + u24’2 + d2 + u34’2 + 

+%2'2 + Ud2))dS + 2nd + Q12r2 (8.2) 

Here p2 is the quadratic part, relative to yr, y2, Uij of the expression 

In the case when the liquid’s free surface So possesses three planes of symmetry and 
they are the coordinate planes, for I’, there holds the expression 

r 2 = M%r,s + it1%sC2 - J$,s - J&,2 (8.4) 

Here M(l), M(2), J$, JI”,’ are the masses and the moments of inertia relative to the 
( X,X* )-plane which the hqmd would have if it filled the regions ~(1) and r(s) of the 
( x1x2zs )-space, whose geometric meaning is analogous to that of the regions a(-) and 
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$+) considered earlier. The quantities M(t), M(s) and Jg’, J$‘, caused by the 
presence of a free surface of the liquid, could be called the apparent additional masses 

and moments of inertia of the system. 
Suppose that the conditions 

D, sz i&’ - fill0 - J;‘,’ > 0, D, 3 B.98o - f?E220 - J;;’ > 0 

D = DID2 - 6,,“‘>0 
(8.5) 

are fulfilled. Then, using the Schwarz inequality, from (8.2) we obtain, with due regard 

to (8.4), the inequality 

62W, 2 Q02D;’ (Dry1 - 812072 + w, { (a 4 s) @IS - ~18 + u31- UM) ds)' + 

0 

+ Qo2D-‘D;‘(Dr, +&a + S)&,o (%3 - %3 + u31- u34) + D1("23 - 

0 

- u,s+u,,- 7,435)1dS)2+ Q02[(M + M('))zlc2 +(M + fu(2))22c2]+QP1V(U) (8.6) 

v (@ = ~[E,(123U1,"2 +126%/2 +I31u2,"2 +&4"2,"2 +112u3/2 +rlSu3,"2 + 

+ i13"23"2 + 11~U26'~ + I21u3:~ + I2,u3,"2 +'132U1/2 + I,c$,,"~) + 

+ Q02 [a (I -s) + '12 (l2 - s2)l (u12'2 + u15'2 + u21'2 + u24'2 + U31f2 + u3412 + 

+ u32'2 + u3i2)-- Q02 ( u122 + %' + u132 + u162 + u212 + u242 + u232 + u262) - 

- JD-‘Qo2 I&(‘23 - U26 + u32 - u3~)~ + &(u,, - U16 i- U31 - UQ~)~ -I- 

+ 261,"(u23e- u26 + '32 - '36) ('13 - %6 + u31 - u3,)1) dS (8.7) 

For simplicity of computation we assume that 

II3 = I,, = I23 = I,, = IO, I,, = I,, = I,, = I,, = I,, = 134 = 

= Is2 = I35 = I, 

We consider the following variational problems. Find the minima x0, x1 of the func- 
tionals 

CD, (u) = (S (u” + 00) ds)_l s { E*IJP - aQ02 [c4 (I - s) ++ V2 - s3)] ut2}ds 
0 0 

(a = 0,l) (8.8) 

in the class of functions u (s), 0 < s ,( 1, continuously differentiable upto the fourth 
order, satisfying conditions (1.3). From (8.8) and (8.7) follows the inequality 

'2 [ (xOQ(u13'2 + u16'2 + u23'2 + u26'2) + xl6 ("12'2 + u16'~ + u2~'~ + u23'2 + 
0 

+ '32 I2 + u3i2) + %@312 + u3t2 + u322 + U352)+ (x0 - Q02)(u132 + u162 + 

+ u232 + u262) + (xl - Q02)(u122 + ul52 + '212 + u242) - 

- JD-L!202 [D, (uz3 - u26 + u32 - u35)2 + D,(u13 - u16 + u31 - u34) + 

+ 2sl,o(u23- u26 + u32 - u35)("13 - u16 + u31 - u34)l 1 a' (8.9) 

The Sylvester conditions for the positive definiteness of the quadratic form in the quan- 
tities Uij, Ui j' , occurring in the integrand in (8.9), reduce to the inequalities : 
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x1 > 03 x0 > &I2 (8.10) 

(%I + x1 - s&J2 - 8JD,D-‘Q,,2)(x, + x1 - q2) > (x0 - x1 - cao2)2 

I(% + x1 - Qo2 - 8JD,D-1i2,,2)(xo + Xl - s&y - (q - Xl - Q,2)2] x 

x I(%, + x, - Qao2 - 8JD2D-152,2)(x, + x, - Qo2) - (x,, - itI - Qo2)2] > 

> IS J6,,“D-‘Qo2 (x0 + x1 - c&2)12 

From (8.6), (8.9) it follows that when conditions (8.5), (8.10) are fulfilled, a2 W, 
is a functional positive definite in the metric Q ID=,, . Because I$‘* is continuous in the 
metric 0s lp=o there follows the positive definiteness in the metric Q J+s of functional 
w,. Consequently, inequalities (8.5), (8.10) are the sufficient stability conditions for 
the unperturbed steady-state motion (8.1) with respect to the functionals Q. I,+,,, Q&,, 
T, and P ; here in the expression for h (see Sect.4) by ai, c+, 03 we should now 
mean the projections onto the xi, x2, x3 axes of the angular velocity vector of the 
rigid body in its motion relative to the coordinate system C.&z’. In the case when S$ = 

= 0, conditions (8.5), (8.10) reduce to the following: 

xl > 0, q, > f&2, fj330 _ fiiio - J12(0 > 2Jn02 (‘” + ” - Qn2) 
x1(x0 - W) 

( i & 1,2) (8.11) 

Hence we may easily obtain the stability conditions for unperturbed motion (8.1) for 
the cases when less than three pairs of rods are attached to the body and when the liquid 
is absent or wholly fills the cavity, 

Thus, for example, if only one pair of rods is attached to the body, which in unper- 
turbed motion are directed along the rotation axis, then the stability conditions are ob- 
tained from (8.11) as x1 - M and have the form 

x0 > W, ess” _ eii” _ JO > WQn2 
12 x0 - !a02 

(i = 1, 2) 

Analogous conditions for this case (in the absence of the liquid) were obtained in [33, 
however, the remarks made in Sect. 6 are valid also here. If two pairs of rods are attached 

to the body, perpendicular to the rotation axis in the unperturbed motion, then the sta- 

bility conditions are obtained from (8.11) as xo + CO and have the form 

XI > 0, 6%’ -0ii” - Jyi > xI 27 5202 (i = 1, 2) 

If the rods are absent, the stability conditions reduce to the following: 

&so - otiio - J(i) > 0 
12 (i = 1,2) 

In cases when the liquid is absent or wholly fills the cavity, in the stability conditions 
cited we should set Jr; 3 J@) = 0. 

12 

The author thanks V.V. Rumiantsev for attention to the work and for discussing it, 
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Proof is given of the idifferent stability with respect to small perturbations of 
two flows: a hollow vortex bounded on the outside by a circular wall, and a free 

hollow vortex. 
A method of analyzing the stability of plane potential flows of a perfect incom- 

pressible fluid with respect to small perturbations was suggested in [l] by which 
the difficulties arising in the determination of eigenfunctions of two-dimensional 

hydrodynamic flows. The method proposed there for the analysis of stability con- 
sists of the linearization of equations of hydrodynamics by conformal mapping 
of the unperturbed flow region onto that of the perturbed flow. It is applicable 

to fairly simple regions of the unperturbed flow, otherwise the feasability of con- 
formal mapping becomes problematic. This aspect was not touched upon in [l] ; 
some of the flows considered by the Authors cannot be analyzed in this way, since 
for these conformal mapping is impossible. Neither the question of completeness 
of the system of eigenfunctions in cases in which mapping is possible was inves- 

tigated by them. It is, therefore, interesting to examine the equations arising 
in investigations of small perturbations of stationary flows by the method of con- 
formal mapping, to determine its limits of applicability and, also, to solve 
Cauchy’s problem in terms of perturbation equations. 

1. A hollow vortex bounded on the outlfde by a circular wall. 
The potential flow of an incompressible fluid in the form of a plane hollow vortex boun- 
ded on the outside by a circular wall is considered. With the notation z0 = z,, $ iy, 
for the complex variable in the physical plane of flow and 5 = u0 - iv,, for the com- 
plex velocity, the flow velocity is given by formula 

[ = - ic-1, 1 G I zo I <r-l, O<r<l (I.11 
The flow boundary 1 q, 1 = 1 is free and the pressure at it is constant: p = const. 
The line 1 zO 1 = F-’ is the rigid wall and the flow hodograph is represented by the ring 


